MATEMATIK
GU, Chalmers
A.Heintz

Datum: 2011-08-16
Hjälpmedel: Beta
Telefonvakt: Richard Lärkäng

Tid: 8:30

Tel.: 0703-088304

Tenta i matematisk modellering, MMG510, MVE160

1. Linear systems.

Consider the following ODE:
$\frac{d \vec{r}(t)}{d t}=A \vec{r}(t), \vec{r}(t)=\left[\begin{array}{l}r_{1}(t) \\ r_{2}(t)\end{array}\right]$ with $A=\left[\begin{array}{cc}1 & -2 \\ -1 & -1\end{array}\right]$.
Find the evolution operator for this system.
Find which type has the stationary point at the origin and give a possibly exact sketch of the phase portrait.
(2p)
Eigenvectors and eigenvalues of the matrix $\left[\begin{array}{cc}1 & -2 \\ -1 & -1\end{array}\right]$, are: $\left\{\left[\begin{array}{c}-\sqrt{3}-1 \\ 1\end{array}\right]\right\} \leftrightarrow \lambda_{1}=$ $\sqrt{3},\left\{\left[\begin{array}{c}\sqrt{3}-1 \\ 1\end{array}\right]\right\} \leftrightarrow \lambda_{2}=-\sqrt{3}$
The change of variables $\vec{r}=\left[\begin{array}{cc}-\sqrt{3}-1 & \sqrt{3}-1 \\ 1 & 1\end{array}\right] \vec{y}$ reduces the system to two independent equations: $y_{1}^{\prime}=\sqrt{3} y_{1}$ and $y_{2}^{\prime}=-\sqrt{3} y_{2}$.
Sylvesters method uses matrices $Q_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}}$ and $Q_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}}$ Such that $A=Q_{1}+Q_{2}$ and the evolution operator $\exp (A t)=\exp \left(\lambda_{1} t\right) Q_{1}+\exp \left(\lambda_{2} t\right) Q_{2}$
$Q_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}}=\frac{1}{(\sqrt{3})-(-\sqrt{3})}\left(\left[\begin{array}{cc}1 & -2 \\ -1 & -1\end{array}\right]-(-\sqrt{3})\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=\left(\frac{1}{2 \sqrt{3}}\right)\left[\begin{array}{cc}\sqrt{3}+1 & -2 \\ -1 & \sqrt{3}-1\end{array}\right]$
$Q_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}}=\frac{1}{(-\sqrt{3})-(\sqrt{3})}\left(\left[\begin{array}{cc}1 & -2 \\ -1 & -1\end{array}\right]-(\sqrt{3})\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)==\left(\frac{1}{2 \sqrt{3}}\right)\left[\begin{array}{cc}\sqrt{3}-1 & 2 \\ 1 & \sqrt{3}+1\end{array}\right]$
The stationary point is a saddel point. Trajectories ar hyperbolas that tend to lines through the origin parallel to eigenvectors.

2. Ljapunovs functions and stability of fixed points.

Consider the system of equations: $\quad\left\{\begin{array}{l}x^{\prime}=-x+2 x y \sin (y) \\ y^{\prime}=-\cos (x) y\end{array}\right.$
Investigate stability of the fixed point in the origin.
We try if function $V(x, y)=x^{2}+y^{2}$ is a Lyapunovs funktion in some neghbourhood of origin. $V^{\prime}=2 x(-x+2 x y \sin (y))+2 y(-\cos (x) y)=-2 x^{2}-2 y^{2}+4 x^{2} y \sin (y)+2 y^{2}(1-\cos (y))=$ $-2\left(x^{2}+y^{2}\right)+2\left(x^{4}+y^{4}\right)+x^{2} O\left(y^{3}\right)+2 y^{2} O\left(y^{2}\right)$
where $O(z) / z<$ const when $z \rightarrow 0$. It shows that in a small neighbourhood of the origin all terms in V^{\prime} are dominated by $-2\left(x^{2}+y^{2}\right)$ and that V is a strong Ljapunovs function and th eorigin is an asymptotically stable point for the system.

3. Periodic solutions to ODE

Show that the system of equations
$\left(x^{\prime}=x-2 y-x\left(2 x^{2}+y^{2}\right)\right.$
has at least one periodic solution.
We consider the equation for the function $\varphi(x, y)=2 x^{2}+y^{2}$ by myltiplying the first equation by $2 x$ and the second equaiton by y.
$\left\{\begin{array}{l}2 x x^{\prime}=2 x x-4 x y-2 x^{2}\left(2 x^{2}+y^{2}\right) \\ y y^{\prime}=4 x y+y^{2}-y^{2}\left(2 x^{2}+y^{2}\right)\end{array} \Longrightarrow 0.5 \varphi^{\prime}=0.5\left(2 x^{2}+y^{2}\right)^{\prime}=\left(2 x^{2}+y^{2}\right)-\left(2 x^{2}+y^{2}\right)^{2}=\right.$ $\varphi(x, y)(1-\varphi(x, y))$
We observe that for (x, y) on the ellipse ring $2 x^{2}+y^{2}=0.5$ we get $\varphi^{\prime}>0$ and on the ellipse $2 x^{2}+y^{2}=2$ we get $\varphi^{\prime}<0$. It implies that the elliptic ring $0.5<2 x^{2}+y^{2}<2$ is the invariant set for the system. On the other hand on the ellipse $2 x^{2}+y^{2}=1$ where $\varphi^{\prime}=0$ velocities are not zero and system has no stationary points in the ring $0.5<2 x^{2}+y^{2}<2$.Poincare'Bendixson theorem implies that is must be a periodic solution inside this ring.

4. Hopf bifurcation.

Explain the notion Hopf bifurcation.
Show that the system $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=-x+\mu y-y^{3}\end{array}\right.$
has a Hopf bifurcation at $\mu=0$.
The linearizaton of the equation around the origin is $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=-x+\mu y\end{array}\right.$
The matrix ${ }^{0} \begin{array}{ll}0 & 1 \\ -1 & \mu\end{array}$, has eigenvalues: $\lambda_{1}=\frac{1}{2} \mu-\frac{1}{2} i \sqrt{4-\mu^{2}} ; \quad \lambda_{2}=\frac{1}{2} \mu+\frac{1}{2} i \sqrt{4-\mu^{2}}$.
The sustem stable focus for $\mu<0$ and unstable focus for $\mu>0 . \frac{d \operatorname{Re} \lambda_{i}(\mu)}{d \mu}>0$.
We check stability of the stationary point in the origin for $\mu=0$, by computing $\left(x^{2}+y^{2}\right)^{\prime}$: $0.5\left(x^{2}+y^{2}\right)^{\prime}=-y^{4} \leq 0$. It implies that $\left(x^{2}+y^{2}\right)$ is a weak Lyapunovs function.
On the other hand system has no trajectories imbedded in the line $y=0$, because $y^{\prime}=-x$ on this line and trajectories cross it everywhere exept the origin. It implies that the origin is even asymptotically stable stationary point. It implies that the system has a Hopf bifurcatiuon for $\mu=0$. For $\mu<0$ system has stable focus in the origin. When μ changes from negative to positive valjue it appears a limit cycle around the origin and the stationary point becomes unstable.

5. Chemical reactions by Gillespies method

Consider the following reactions: $X+P \underset{c_{2}}{\stackrel{c_{1}}{\leftrightarrows}} \quad W, \quad Z+Z \underset{c_{4}}{\leftrightarrows} \quad P$ where $c_{i} d t$ is the probability that during time $d t$ the reaction with index i will take place $i=1,2,3,4$.
a) Write down differential equations for the number of particles for these reactions.
$X^{\prime}=-c_{1} P X+c_{2} W$
$P^{\prime}=-c_{1} P X+c_{3} \frac{1}{2} Z(Z-1)-c_{4} P$
$W^{\prime}=c_{1} P X-c_{2} W$
$Z^{\prime}=-c_{3} Z(Z-1)+c_{4} 2 P$
b) Give formulas for the algorithm that models these reactions stochastically by Gillespies method.
(2p)
$P(\tau, \mu) d \tau$ is the probability that the reaction of type μ will take place during the time interval $d \tau$ after the time τ when no reactions were observed.
$P(\tau, \mu)=P_{0}(\tau) h_{\mu} c_{\mu} d \tau$.
$h_{\mu} c_{\mu} d \tau$ is the probability that only the reaction μ will be observed during the time $d \tau$.
h_{μ} is the number of combinations of particles necessary for the reaction μ. For reaction 1 in the example: $h_{1}=X P$, for reaction 2: $h_{2}=W$, for reaction 3: $h_{3}=\frac{1}{2} Z(Z-1)$, for reaction 4: $h_{4}=P$.
For $P_{0}(\tau)=\exp (-a \tau)$ with $a=\sum_{\mu=1}^{4} h_{\mu} c_{\mu}$.
Algorith to model reactions:
0) initialize variables X, Z, W, P for time $t=0$.

1) Compute h_{i}, a for actual values of variables.
2) Generate two random numbers r and p uniformly distributed over the interval (0,1).

Random time τ before the next reaction is $\tau=1 / a \ln (1 / r)$.
Choose the next reaction μ so that $\sum_{i=1}^{\mu-1} h_{i} c_{i} \leq p a \leq \sum_{i=1}^{\mu} h_{i} c_{i}$.
3) Add τ to the time variable t.Change the numbers of particles after the chosen reaction:
$\mu=1 \quad \rightarrow X=X-1, P=P-1, W=W+1$.
$\mu=2 \quad \rightarrow X=X+1, P=P+1, W=W-1$.
$\mu=3 \quad \rightarrow Z=Z-2, P=P+1$.
$\mu=4 \quad \rightarrow Z=Z+2, P=P-1$.
3) If time is larger then the maximal time we are interested in - finish computation, otherwise go to the step 1 .

Max. 20 points;
For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points;
Total points for the course will be an average of points for the project (60%) and for this exam together with bonus points for home assignments(40%).

